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SUMMARY 

In this paper we address the problem of the implementation of boundary conditions for the derived pressure 
Poisson equation of incompressible flow. It is shown that the direct Galerkin finite element formulation 
of the pressure Poisson equation automatically satisfies the inhomogeneous Neumann boundary conditions, 
thus avoiding the difficulty in specifying boundary conditions for pressure. This ensures that only physically 
meaningful pressure boundary conditions consistent with the Navier-Stokes equations are imposed. Since 
second derivatives appear in this formulation, the conforming finite element method requires C' continuity. 
However, for many problems of practical interest (i.e. high Reynolds numbers) the second derivatives need 
not be included, thus allowing the use of more conventional Co elements. Numerical results using this 
approach for a wall-driven contained flow within a square cavity verify the validity of the approach. 
Although the results were obtained for a two-dimensional problem using the p-version of the finite element 
method, the approach presented here is general and remains valid for the conventional h-version as well 
as three-dimensional problems. 
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1. INTRODUCTION 

Finite element solutions of transient incompressible viscous flow in terms of the primitive 
variables have typically followed two distinct approaches. 

One approach has been to discretize the time-dependent Navier-Stokes equations in their 
original primitive variable form (momentum equations and a continuity equation). 1-3 The 
continuity equation can be considered as a constraint on the divergence of the velocity rather 
than as a fully fledged equation coupling the pressure to the velocity. Thus the pressure in these 
equations appears as a Lagrange multiplier that ensures the satisfaction of the solenoidal 
constraint. Moreover, the interpolating basis functions for pressure must be at least one order 
less than those for velocity  component^.^ 

An independent concern with the discretization of the equations in their original form is that 
the resulting discrete (matrix) operator is neither symmetric nor positive definite.' This is not 
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important when direct methods such as those based on Gaussian elimination are used to solve 
the resulting system of equations. Direct methods, however, can be prohibitively expensive in 
terms of both computer storage and time for large three-dimensional problems. For this reason 
there is serious interest in methods such as preconditioned iterative methods that use less storage 
and time to solve the resulting equations. The non-symmetric and indefinite discrete operator 
obtained with the original Navier-Stokes equations often causes most iterative techniques to 
diverge or to converge very slowly. 

An alternative to the approaches that solve the primitive equations in their original form is 
to replace the continuity equation with a Poisson equation for the pressure, thus decoupling the 
momentum and continuity equations except on the domain boundary. This approach has been 
widely used in finite difference solutions of incompressible flow problems (see Reference 6 for a 
review of this approach). However, it has not been used as extensively in finite element 
forrn~lations.4~~ One reason is that there are theoretical and practical difficulties connected with 
the specification of boundary conditions for the pressure Poisson equation. The issue of the 
boundary conditions for the derived Poisson equation for the pressure has been a topic of intense 
debate and discussion in recent years.'-'' In general there are no a priori boundary conditions 
on the pressure. Moreover, there are difficulties with the direct implementation of the derived 
boundary conditions for the pressure, particularly in finite difference methods.**' '-l 

We will show in the following sections that the difficulties in specifying the pressure boundary 
conditions can be circumvented by utilizing properties inherent in the finite element formulation. 
Namely, we need not specify the inhomogeneous Neumann pressure boundary conditions. In 
subsequent sections we present results for test problems to demonstrate the validity of the 
approach. 

2. GOVERNING EQUATIONS 

The governing equations for the unsteady, isothermal flow of incompressible, viscous, Newtonian 
fluids in a domain R c 08" (n = 2,3), with no body forces and constant properties, are 

aulat + v (u u) - vvzu + vp = 0, (14  

v - u  = 0, (1b) 
subject to initial conditions 

u(x, 0) = uo(x) (V - uo = 0) in Sr = R u r (2a) 

and boundary conditions 

u = w(x, t )  ( lr w - n dT = 0, n - uo(x) = n w(x, 0) on r = dR, ) 
where u(x, t) is the velocity, p(x, t) is the kinematic pressure (pressure divided by density), v is 
the kinematic viscosity (v 2 0), w(x, t) is a given function on r and n denotes the outward normal 
unit vector at r. 

The system (1) is equivalent to'' 

a + Vp = f(u) in R, a =  w on r, (34  

and 

Vzp = V - (f - a) in R, aplan = n . (f - w) on r, (3b) 
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where a = au/at, f(u) = vV2u - V * (u u) and the pressure Poisson equation has been obtained by 
taking the divergence of the momentum equation (la). Note that the pressure Poisson equation 
can be obtained in various equivalent  form^.^*'^*'^ 

3. FINITE ELEMENT FORMULATIONS 

The finite element solution of the continuum equations (3) is obtained by establishing a weak 
form of the equations using the Galerkin procedure.’ This formulation, however, may be 
achieved via different routes. 

Gresho and his colleagues at the Lawrence Livermore National Laboratory have over 
the past several years developed a finite element formulation which is analogous to the 
derivation of the continuum PPE. 10*15 In this approach, instead of directly constructing the 
discrete Laplacian operator from equation (3b), they derive the discrete analogue of (3b) which 
they call the consistent discretized pressure Poisson equation. One advantage of such an 
approach, among others, is that no pressure boundary conditions need be imposed to generate 
the consistenct discretized Laplacian operator, since they are always built in auto- 
matically. O 

Alternatively, the finite element formulation of the pressure Poisson equation can be achieved 
by direct construction of the discrete Laplacian of equation (3b). The advantage of this approach, 
in addition to being much simpler, is that it allows equal-order interpolation for velocity and 
pressure. The main drawback, however, is that in this scheme the discrete operator must be 
generated with the natural pressure boundary condition. Earlier direct discretizations of the PPE 
have either obtained the normal derivative of the pressure on the boundary by applying the 
normal component of the momentum equations at the boundary4.’ or assumed homogenous 
Neumann boundary conditions.” While these assumptions give good results and are well 
justified in many instances, they can result in poor approximations of the flow field in certain 
circumstances. (For an interesting analysis and comparison of the consistent and direct 
approaches see Reference 18.) 

The difficulty in the implementation of the natural boundary condition for the pressure, 
however, can be circumvented by judicious application of the finite element procedure to the 
pressure Poisson equation. Applying the standard Galerkin-weighted residual method to 
equation (3b), we arrive at the equivalent integral equation 

where 4 is a set of linearly independent basis functions chosen such that all global boundary 
conditions are ~atisfied.’.’~ Applying the Green-Gauss theorem or integrating by parts, we 
obtain 
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V 4  * Vp dR = [V4 ‘(f - a)] dR + 4 n  - [Vp - (f - a)] dT I 
However, Vp - (f - a) = 0, to give finally 

[V4 - (f - a)] do.  

Remarks 

1. Equation (6) provides a weak form of the pressure Poisson equation that automatically 
satisfies the inhomogenous Neumann boundary conditions. Thus the difficulty of the 
implementation of the pressure boundary conditions is circumvented in its entirety. 

2. This formulation does not need to use V - u  = 0, i.e. it does not satisfy any discrete 
approximation to the solenoidal condition. The incompressibility condition is asymptotic- 
ally satisfied by the convergent solution. However, as will be demonstrated below by 
numerical examples, for a reasonable discretization the mass conservation is acceptable. 

3. All boundary conditions in this formulation are assumed not to vary with time. 

4. SPATIAL AND TIME DISCRETIZATION 

The two-dimensional components of velocity and pressure are discretized using the p-version 
of the finite element method with hierarchic basis functions. The use of hierarchic basis functions 
in finite element formulations has received increasing acceptance in recent years as an effective 
adaptive technique for discretizing partial differential The basic idea of the 
p-version is to use higher-order polynomials of degree p in regions where higher accuracy is 
desired, instead of reducing the mesh size, i.e. reducing the diameter h of the largest element 
(h-version). The element is hierarchic in the sense that the elemental discretized operator matrix 
of degree p + 1 contains as a submatrix the elemental matrix of degree p. This property is 
particularly useful when iterative solution techniques are employed. Moreover, the use of 
hierarchic basis functions provides a means to develop error indicators that indicate areas where 
a refinement gives the best improvement. Patera and his colleagues at Massachusetts Institute 
of Technology have developed a spectral element method for fluid dynamics which is similar to 
the p-version finite element me th~d . ’~ . ’~  However, the difference is that hierarchic basis functions 
are not employed in the spectral element method. 

The discretization of the weak form of the momentum equation (la) and the pressure equation 
(6) leads to the coupled discrete equations 

M u = LJJ + L,U + C P  + R, (74  

K P = L, u + D tr, (7b) 

where U and P represent the elemental vectors of u and p respectively, R is the velocity load 
vector to be determined from the boundary conditions (2), and the discretized matrices for a 
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single element are 

The superscript T denotes matrix transposition. 

Remarks 

Since second derivatives (in the viscous part) appear in the source terms for the pressure 
equation (equation (7h)), the conforming finite element method requires C' continuity, 
i.e. both the velocity and its first derivatives must be continuous across the common 
boundary of adjoining elements so that the second derivatives are integrable. Such 
elements have been formulated and successfully used in a wide range of scientific and 
engineering  problem^.^*-^^ 
The use of C' elements generally involves more degrees of freedom per element than the 
standard Co basis functions. Also, it is well known that in the case of C' continuity, 
conformity is not enforced as easily as in the case of Co continuity where only the velocity 
needs to be c o n t i n u ~ u s . ~ ~  These computational drawbacks, however, may be overcome 
either by using techniques such as the discontinuous Galerkin method" or by dropping 
the viscous part from the integral on the right-hand side of equation (7h). However, as 
pointed out by G r e ~ h o , ~ ~  in limiting cases such as steady Stokes flow the neglect of the 
viscous term yields a PPE with no driving force. Although theoretically unproven, our 
experience indicates that for low to moderate Reynolds numbers, the unsteady term can 
in certain cases compensate for the viscous term. In other words, the steady solution is 
attained by taking the t + co limit of a transient solution. However, in general, dropping 
the viscous term limits the applicability of the scheme to high Reynolds numbers. For high 
Reynolds numbers, i.e. convection-dominated flows, the viscous term is not as important 
as the advective term. Previous studies have also reached similar concl~sions.~ Thus for 
many problems of practical interest (i.e. high Reynolds numbers) the second derivatives 
need not be included in the numerical formulation, allowing the use of more conventional 
Co elements. In the numerical examples to follow, this approach has been adopted. 
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Therefore the problem reduces to the transient-iterative solution of two coupled discrete 
systems: a non-linear system for the velocity with the pressure as the source term (equation 
(7a)) and a linear system for the pressure with the velocity as the source term (equation (7b)). 

The time integration of the momentum equations can be achieved by a fractional time-stepping 
(splitting) method.33 This fractional scheme was first used by Orszag and K e l l ~ ~ ~  and later 
developed by other  investigator^.^^-^^ 

The time-differencing scheme can be split into three steps 

U' = U" + AtM-'L,U", 

u2 = u1 + A C M - ~ L J J ~ ,  

Un+'  = U2 + AtM-'CP", 

where U' and U2 are auxiliary velocity vectors, U" and U"" are the velocity vectors at 
time steps n and n + 1 respectively and the pressure P is computed from equation (7b). 
The boundary conditions used in each step of the fractional splitting method are the appropriate 
conditions for the corresponding equation being In the finite element method these 
conditions are incorporated in the formulation. 

For the lid-driven square cavity problem the algorithmic expression of the splitting scheme 
is as follows. 

0. Given U". 
1. Compute P" from equation (7b) by setting DU"" = 0 on the right-hand side. 
2. Update U' from equation (8a). 
3. Update U2 from equation (8b). 
4. Update U"" from equation (8c). 
5.  Increase n to n + 1 and go to step 1. Stop when a convergent solution is attained. 

Note that only the advective operator in step 2, treated explicitly, imposes stability conditions 
for the scheme (Courant-Friedrich-Lewy condition). The viscous part (step 3) is solved implicitly 
and is thus unconditionally stable. 

Although in genera1 splitting offers considerable simplifications compared with implicit 
coupled schemes, it may suffer from larger time-stepping errors. However, it is possible to reduce 
the error of the fractional time-stepping method by applying higher-order local extrapolation 
techniques, e.g. Richardson extrapolation. l 4  Another method, based on a Green function 
technique, was also proposed by Marcus3 to reduce the time-splitting error. 

5. NUMERICAL EXAMPLES 

The approach presented above has been tested on the classical problem of the wall-driven 
contained flow within a unit square cavity. As suggested by Gresho,j2 we first consider a simple 
case, namely steady Stokes flow. As mentioned above, the steady state solution is obtained 
through time marching of our unsteady scheme. In fact, the unsteady term is the only driving 
force for the PPE in this example. However, we should stress that this may not work in all 
circumstances. 

At t = 0 a constant velocity distribution is imposed at the lid. The pressure is calculated from 
the pressure equation (7b). With the known (uo, po)  at the initial step the computation marches 
forward to the first step. The discretized equations have been integrated forward in time using 
the fractional time-stepping (splitting) method (equations (8)). In this scheme the advective and 
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VELOCITY FIELD 
STOKES FLOW 

Figure 1. Velocity field in square cavity for Stokes flow 

PRESSURE FIELD 
STOKES FLOW 
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Figure 2. Pressure isobars for Stokes flow 
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Figure 3. Velocity field in square cavity for Reynolds number of 200 
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Figure 4. Velocity field in square cavity for Reynolds number of loo0 
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HORIZONTAL Y B L O C I  T Y  

Figure 5. Horizonal velocity along centreline for direct and PPE solutions for Reynolds number of 200 

final velocity steps (equations (8a) and (8c)) are solved using the preconditioned conjugate 
gradient method and the remaining steps (viscous and pressure parts) are solved using the 
conjugate gradient technique. 

One hundred elements have been used in all cases with hierarchic polynomial basis functions 
of degree three. The no-slip boundary condition (u = u = 0) has been imposed at all boundaries 
except y = 1. To avoid the problem of singularities at the upper corners, we specify a velocity 
distribution at the lid which is zero at the upper two corners of the cavity but increases linearly 
to a constant value at the lid within the corner elements. The velocity and pressure fields are 
shown in Figures 1 and 2 respectively. These results are in good agreement with previous results 
from finite differen~e~’*~O and finite element4*4’ simulations. 

We then considered the driven cavity problem for higher Reynolds numbers. The results for 
Reynolds numbers of 200 and 1000 are presented in Figures 3 and 4 respectively. These results 
are also in good agreement with previous results. 

To confirm the validity of our approach, we also compared the numerical results presented 
above against direct solutions of the original Navier-Stokes equations (where no PPE is formed). 
The steady momentum and continuity equations were discretized using the p-version of the finite 
element method with hierarchic basis functions of order 10 for the velocity and two orders less 
for the pressure. The discretized equations were solved directly using Newton’s method. Figure 
5 displays the horizontal velocity along the centreline for a Reynolds number of 200 for both 
the direct and the pressure Poisson equation approaches. As this figure shows, the results are 
nearly identical. 

6. CONCLUDING REMARKS 

A finite element approach for the implementation of the boundary conditions for the pressure 
Poisson equation of incompressible flow is presented. In this approach a standard Galerkin- 
weighted residual method is applied to the time-dependent Navier-Stokes (momentum) equa- 
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tions and the Poisson equation for the pressure. It is shown that the direct Galerkin finite element 
formulation of the pressure Poisson equation automatically satisfies the inhomogenous Neu- 
mann boundary conditions for the pressure. Since second derivatives (in the viscous term) appear 
in this formulation, it requires C’ continuity. However, this restriction may be relaxed for most 
practical cases of interest (i.e. high Reynolds numbers) by dropping the second-derivative terms. 
Numerical results for a wall-driven contained flow within a square cavity indicate that the 
approach is numerically stable and accurate. 

Although the numerical results presented in this paper are obtained for the two-dimensional 
problem using the p-version of the finite element method, the approach is also valid for the 
conventional h-version as well as three-dimensional problems. 
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